
Self-made systems

Maarten van Steen, Spyros Voulgaris, Elth Ogston, Frances Brazier
Vrije Universiteit Amsterdam

1 Introduction
Self-* systems are designed to adapt to a changing en-
vironment such that specific properties are automatically
restored when that environment disturbs the normal be-
havior. We also see that designs generally have several
global parameters, which are subsequently configured for
specific applications or domains. The choice of a param-
eter value often affects the emergent properties of a self-*
system.

Parameters may need to be carefully tuned in order to
obtain the desired emergent behavior. Ideally, the param-
eter value can be found by means of a feedback loop based
on monitoring system behavior. This approach effectively
transforms a parameter into just another system variable
and has also been referred to as self-tuning in [4].

We take the position that in designing self-* systems
we need to strive for parameterless designs, which we de-
note as self-made systems.1 In this paper, we discuss two
different examples of systems that we are currently de-
veloping to see how parameter choices affect prominent
emergent behavior and how their influence can be mini-
mized.

2 Unstructured overlays
Consider a dynamically changing collection of nodes N
that jointly maintain an overlay network. Each node n has
a list V

�
n � of c (neighbor, hop count) pairs, referred to as

its view. As N may change over time, nodes communicate
to update their view. To this end, each node n repeatedly

1Main Entry: self-made. Function: adjective. Description: made
such by one’s own actions; especially: having achieved success or
prominence by one’s own efforts � a self-made man � .

executes the following exchange protocol (let N
�
t � denote

the set of nodes at the current time t):

1. Randomly select a peer m with
�
m � k ��� V

�
n � . If m ��

N
�
t � , repeat with V

�
n �	� V

�
n ��
 �

m � k �
2. V

�
n �� V

�
n ��� � n � 0 �

3. Send V
�
n � to m; receive V

�
m � from m; � � p � k ���

V
�
m � :

�
p � k �	� �

p � k � 1 �
4. V � � n ��� V

�
n ��� V

�
m � such that no node is listed

more than once.

5. V
�
n ��� V � � n � restricted to the c entries with the low-

est hop count.

The contacted node m executes all but the first step as
well. In the original version of this protocol, called News-
cast [3], each node executes the exchange protocol once
every ∆T time units. As it turns out, with c � 20 networks
as large as 100,000 nodes remain connected, regardless of
the initial topology. Moreover, these networks have been
demonstrated to be highly robust.

There are several design parameters that influence the
emergent behavior of the protocol, of which the two most
prominent ones are the view size c and the cycle length
∆T . (A discussion and evaluation of other parameters can
be found in [2].) The choice of c affects the connectivity
of the network, as well as properties such as clustering
and others related to complex networks [1], but has not
been found critical in the sense that small changes lead to
very different behavior.

More interesting, in this respect, are the—conflicting—
factors that inflict the choice of the cycle length. The cycle
length determines the rate at which views are exchanged,
and thus the speed at which changes in the set of nodes
are detected. In other words, a small cycle length is re-
quired to keep a rapidly changing set of nodes up to date,

 0

 5000

 10000

 15000

 20000

 0 50 100 150 200
 0

 5000

 10000

 15000

 20000

 0 50 100 150 200

(a) (b)
Figure 1: In-degree distribution when 10% of the nodes run (a) twice as fast, and (b) ten times as fast as the rest,
respectively.

whereas it would be an overkill—in terms of processor
and network resources—for a set of nodes changing at
a significantly lower rate. In the extreme scenario of a
non-changing overlay, exchanging lists is merely useless.
Moreover, the value for ∆T has to be chosen such that
all nodes can execute and complete the exchange proto-
col. That is, ∆T is bound to a minimum value that is de-
pendent on the slowest node and the minimum internode
communication speed across all pairs of nodes.

An alternative is therefore is to adapt ∆T such that it
may vary in the course of time, but also that it is no longer
a global value but simply local to each node. We are thus
confronted with designing a system in which each node
should be allowed to locally decide how often it initiates
the exchange protocol, and when and how it changes its
view-exchange rate.

Turning the cycle length from a global parameter to a
local one has obvious benefits, but has also severe effects
on the emergent behavior of the overall system. For exam-
ple, without taking any counter measures the network will
rapidly partition into many clusters. A promising solution
is to modify the merge operation such that properties such
as connectivity become invariant [6].

Even in this case, though, turning the cycle length to a
local parameter can have undesirable effects for the qual-
ity of the overlay formed. We observed that non-uniform
cycle lengths among nodes results in an unbalanced in-
degree distribution. Figure 1 shows the in-degree distri-
bution for an experiment where 10% of the nodes run at

a faster speed than the rest, namely 2 times faster in 1(a),
and 10 times faster in 1(b). Fast nodes tend to have re-
spectively 2, or 10 times higher in-degree than the nodes
running at normal speed.

Let us take a closer look at this example. In general,
fast nodes run at a speed speed f , and slow ones run at
speeds. Since the in-degree of a node increases by one
each time it shuffles, the expected in-degree ratio between
fast and slow nodes will be proportional to their shuffling
speed ratio, that is,

indegree f

indegrees
� speed f

speeds �

Also, the sum of in-degrees of all nodes is equal to the
total number of outgoing links, that is N � c. If the per-
centage of fast nodes is f , and, therefore, the percentage
of slow ones is 1
 f , we have: f � indegree f �

�
1
 f � �

indegrees � c
From these formulas we can compute the expected

in-degrees of fast and slow nodes to be: indegree f �
speed f

� A, and indegrees � speeds
� A, where

A � c
f � speed f �

�
1
 f � � speeds �

Our formula suggests that with c � 20, the in-degree for
a fast and slow node is 36.36 and 18.18 for 1(a), respec-
tively, and 105.26 and 10.53 for 1(b).

Furthermore, we have found that by simply overdimen-
sioning the view size, while exchanging as few as only

2 randomly selected items from the cache, many desir-
able properties can be retained. This approach shifts the
problem to membership management where the joining
or leaving of a node should at the very least restore the
original graph.

Where joining appears to be relatively simple, parame-
terless scalable detection of failing nodes remains a chal-
lenge. We are currently investigating under which circum-
stances the joining of a node can trigger enough events to
also detect failed nodes. Such a scheme would prevent
having to use a separate heartbeat protocol (with its in-
evitable probe interval).

3 Decentralized data clustering
As another example, consider a network of agents, each
representing a data item. Agents proactively construct
links of which the length reflects the semantic proximity
of their respective data items. This approach effectively
leads to a collection of graphs, each graph connecting se-
mantically related agents and thus forming a data cluster.
The details of this decentralized data clustering scheme
are described in [5], where we also demonstrate that the
quality of clustering is competitive with well-known cen-
tralized approaches.

In the original algorithm, we used two parameters to
steer the clustering. First, we feed the agents with the
maximum length of a good link, λ. Links above this
length are considered bad and as such should not be used
to place two agents in the same cluster. Second, like
in many data clustering approaches, data clusters were
not allowed to grow beyond a certain maximum size s.
Such a maximum is necessary to prevent ending up with
only a single giant cluster. Again, we see examples of
application-dependent, global parameters that should be
avoided.

Eliminating a fixed value for λ turned out to be rela-
tively easy in the case an agent’s data represented a point
in a 2-dimensional Euclidean space (the situation we have
investigated extensively so far). The essence of our ap-
proach is that we let agents learn an appropriate value for
λ, as follows:

0. init: λ � 0
1. recording phase: Watch a series of 50 links, record-

ing the shortest length d. If during the recording

phase a link is seen that is shorter λ, go to step 0.
Otherwise, go to step 2.

2. update phase: When a link is rejected (i.e., its two
agents are not put into the same cluster on account
of their link), λ � λ � d

�
100. Go to step 1 when a

link is encountered with length l � λ, or when λ � d.
Restart step 2 when a link is encountered with length
l � d, setting d � l.

3. match found: Whenever a new match with length l is
made, set λ � l and go to step 1.

With these adjustment rules, we have been able to let
agents discover the correct value for λ. As a result, λ
is no longer a design parameter but can be considered as
another system variable that is optimized during runtime,
in this case by means of a simple learning procedure.

Removing the maximum cluster size is a much more
difficult problem. Rather than pessimistically preventing
clusters from growing too large, we have chosen to allow
clusters to grow to a point where it may be necessary to
split them again. To this end, the links in a cluster are or-
dered by their length. A crucial observation is that when
a cluster should be split, this series will generally show a
pronounced gap. (Note that such a gap will generally oc-
cur at the beginning of a series.) To increase the accuracy
of gap detection, each time a link is added between two
agents that leads to a cycle, we remove the longest link in
that cycle effectively aiming at the construction of a min-
imal spanning tree. As a result, the removal of any link
will split a cluster into two.

The gap can be found by considering the second deriva-
tive of the series: f � � � x � � �

y2
 2y1 � y0 � , where y0 � y1 � y2

are consecutive lengths and x is the position in the series
of y0. However, taking a constant-valued threshold to de-
termine whether or not a gap is large appears to be depen-
dent on the data. To reduce this dependency, we compute
the standard deviation σ of the series � f � � � x ��� . This value
should account for the “normal” variation that we could
expect in the link lengths of a cluster. Figure 2 shows this
approach works in the case of a good and a bad cluster,
respectively.

From this information we then decide on a reasonable
value γ to take further decisions on to whether a gap ac-
tually indicates that the corresponding link should be re-
moved from the cluster (and thus always splitting the orig-
inal cluster into two parts). For our data sets, we experi-

(a) (b)
Figure 2: Example of detecting (a) good and (b) bad clusters using a “cluster separator” γ.

mentally found that setting γ � 7σ does a wonderful job.
However, although we can show that our approach is less
sensitive to the type of data that is being clustered than
many others, it is also clear that it cannot be easily gener-
alized to handle arbitrary data sets.

In this case, we are gradually reaching a point at which
we will have to conclude that a fully self-made system for
decentralized data clustering may be impossible. Instead,
we will have to separate application domains and find rea-
sonable criteria within each domain for splitting clusters.

4 Conclusions
These two examples each illustrate the importance of
striving for parameterless designs, but also that the road
to these designs is often not evident. In general, we doubt
that it is possible to develop completely self-made sys-
tems, such as in the case of decentralized data clustering
where the semantics of the data may need to be taken into
consideration. However, the first example shows that ini-
tial design decisions can be replaced by alternatives that
lead to an improvement of the original system.

5 Acknowledgments
The work described in this paper is carried out in close
collaboration with others. Special thanks goes to Daniela

Gavidia Simonetti, Márk Jelasity, Wojtek Kowalcyck, and
Benno Overeinder.

References

[1] R. Albert and A.-L. Barabasi. “Statistical Mechanics
of Complex Networks.” Reviews of Modern Physics,
74(1):47–97, Jan. 2001.

[2] M. Jelasity, W. Kowalczyk, and M. van Steen. “Newscast
Computing.” Technical Report IR-CS-006, Vrije Univer-
siteit Amsterdam, Department of Computer Science, 2003.

[3] M. Jelasity and M. van Steen. “Large-Scale Newscast Com-
puting on the Internet.” Technical Report IR-503, Vrije
Universiteit, Department of Computer Science, Oct. 2002.

[4] R. Mahajan, M. Castro, and A. Rowstron. “Controlling the
Cost of Reliability in Peer-to-Peer Overlays.” In Second
Int’l Workshop on Peer-to-Peer Systems, volume 2735 of
Lect. Notes Comp. Sc., pp. 21–32. Springer-Verlag, Berlin,
Feb. 2003.

[5] E. Ogston, B. Overeinder, M. van Steen, and F. Brazier. “A
Method for Decentralized Clustering in Large Multi-Agent
Systems.” In Proc. Second Int’l Joint Conf. Autonomous
Agents and Multiagent Systems, July 2003. ACM Press,
New York, NY.

[6] A. Stavrou, D. Rubenstein, and S. Sahu. “A Lightweight,
Robust P2P System to Handle Flash Crowds.” IEEE J. Se-
lected Areas Commun., 22(1):6–17, Jan. 2004.

